This article was downloaded by:


On: 23 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

TLC Analysis of Corrinoid Compounds in Fish Sauce

Shigeo Takenaka^a; Toshiki Enomoto^b; Shingo Tsuyama^a; Fumio Watanabe^c

^a Departments of Veterinary Science, Osaka Prefecture University, Sakai, Japan ^b Department of Food Science, Ishikawa Agricultural College, Ishikawa, Japan ^c Department of Health Science, Kochi Women's University, Kochi, Japan

Online publication date: 09 February 2003

To cite this Article Takenaka, Shigeo , Enomoto, Toshiki , Tsuyama, Shingo and Watanabe, Fumio(2003) 'TLC Analysis of Corrinoid Compounds in Fish Sauce', Journal of Liquid Chromatography & Related Technologies, 26: 16, 2703 - 2707

To link to this Article: DOI: 10.1081/JLC-120024540

URL: http://dx.doi.org/10.1081/JLC-120024540

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES $^{\circledR}$ Vol. 26, No. 16, pp. 2703–2707, 2003

TLC Analysis of Corrinoid Compounds in Fish Sauce

Shigeo Takenaka, Toshiki Enomoto, Shingo Tsuyama, and Fumio Watanabe^{3,*}

¹Departments of Veterinary Science, Osaka Prefecture University,
Sakai, Japan

²Department of Food Science, Ishikawa Agricultural College,
Ishikawa, Japan

³Department of Health Science, Kochi Women's University,
Kochi, Japan

ABSTRACT

The amounts of vitamin B_{12} $(16.3 \pm 5.8 \,\mu\text{g}/100 \,\text{g})$ determined with the *Lactobacillus* microbiological method were about 5.4-fold greater in various fish sauces (n=15) made in Japan than the values $(3.0 \pm 2.0 \,\mu\text{g}/100 \,\text{g})$ determined with the intrinsic factor-based chemiluminescence method. Corrinoid compounds found in the selected nine fish sauces were separated with silica gel 60 thin layer chromatography (TLC) and determined with the microbiological method, indicating that most B_{12}

2703

DOI: 10.1081/JLC-120024540 Copyright © 2003 by Marcel Dekker, Inc.

1082-6076 (Print); 1520-572X (Online) www.dekker.com

^{*}Correspondence: Fumio Watanabe, Department of Health Science, Kochi Women's University, Kochi 780-8515, Japan; E-mail: watanabe@cc.kochi-wu.ac.jp.

2704 Takenaka et al.

is derived from unidentified corrinoid compounds. These results suggest that fish sauce may not be suitable for use as a vitamin B_{12} source.

Key Words: TLC; Bioavailability; Corrinoid; Fish sauce; Fermented foods; Vitamin B_{12} .

INTRODUCTION

Various kinds of fish sauces, traditional food supplements in the diet, are widely used in the world as condiments, and sometimes substituted for soy-bean sauces. A fish sauce (Nam-pla) appears to contribute a major source of vitamin B_{12} (B_{12}) in Thailand since it contains considerable amounts of B_{12} . There is, however, little information available on whether B_{12} found in the fish sauce is true B_{12} or inactive corrinoid compounds for humans.

In the present paper, we describe thin layer chromatography (TLC) analysis of corrinoid compounds from various fish sauces.

EXPERIMENTAL

Materials

B₁₂ was obtained from Wako Pure Chemical Industries (Osaka, Japan). A B₁₂ assay medium for *Lactobacillus delbrueckii* subsp. *lactis* (formerly *L. leichmannii*) ATCC7830 was obtained from Nissui (Tokyo, Japan). Silica gel 60 TLC aluminium sheets were obtained from Merck (Darmstadt, Germany). Cyanocobamides (5-hydroxybenzimidazolyl cyanocobamide, benzimidazolyl cyanocobamide, and 7-adenylcyanocobaminde) isolated from bacteria were kindly provided by Dr. E. Stupperich, Ulm University, Germany. All other reagents used were of the highest purity available commercially. The fish sauces tested were obtained from a local market in Kanazawa-city, Ishikawa-prefecture, Japan, and purchased from a local market in Osaka-city, Osaka-prefecture, Japan.

A Shimadzu (Kyoto, Japan) UV-VIS spectrophotometer (UV-1600) was used to measure turbidity of L. delbreuckii test culture in the microbiological B_{12} assay method. A fully automated chemiluminescence B_{12} analyzer ACS 180 (Chiron Diagnostics, East Walpole, MA) was used for the B_{12} assay.

Copyright $\ensuremath{\mathbb{G}}$ 2003 by Marcel Dekker, Inc. All rights reserved.

TLC Analysis of Corrinoid Compounds in Fish Sauce

Methods

Extraction of B₁₂ in Fish Sauces

Ten grams of each fish sauce were added to $10\,\text{mL}$ of $0.1\,\text{mol/L}$ acetate buffer, pH 4.8, containing $20\,\text{mg}$ of KCN. Total B_{12} was extracted from the solution by boiling for $30\,\text{min}$ at 98°C in the dark. The extraction procedures were done in a Dalton (Tokyo, Japan) draught chamber with fume hood. The boiled solution was cooled to room temperature and used for the B_{12} assay.

Assay of B₁₂

 B_{12} was assayed by the microbiological method with *L. delbrueckii* ATCC 7830 and a B_{12} assay medium (Nissui, Tokyo, Japan), and by the fully automated chemiluminescence B_{12} analyzer ACS 180 as described previously.^[3] The above B_{12} extracts were directly applied to the chemiluminescence B_{12} analyzer. They were diluted with distilled water up to a B_{12} concentration range of 0.01–0.2 μ g/L and used as samples for the microbiological method. The turbidity (100-T%) of the *L. delbrueckii* test culture was measured at 660 nm with a Shimadzu spectrophotometer (UV-1600).

Thin Layer Chromatography Analysis

The B_{12} extracts of the selected nine fish sauces (containing >16 µg of $B_{12}/100\,\mathrm{g}$ by determination with the microbiological method) were spotted on the silica gel 60 TLC sheet and developed with 1-butanol/2-propanol/water (10:7:10) as the solvent in the dark at 24°C. The TLC sheet was dried and cut into small pieces (0.5 × 1.0 cm) with scissors. B_{12} was extracted from the pieces in 80% (v/v) methanol containing 20 mg/L KCN several times, evaporated to dryness under reduced pressure, dissolved in 1.0 mL of distilled water, and used as samples for the B_{12} microbiological assay.

The concentrated solutions ($2\,\mu\text{L}$) of authentic B_{12} and cyanocobamides were spotted on the silica gel 60 TLC sheet and developed under the same conditions. The TLC sheet was dried and $R_{\rm f}$ values of the pink-colored spots of the corrinoids were determined.

RESULTS AND DISCUSSION

Historically, B_{12} contents of foods have been determined by bioassay with B_{12} -requiring microorganisms; *L. delbrueckii* ATCC7830 has been used widely.

2706 Takenaka et al.

Recently, several workers have attempted to assay B_{12} in foods using a fully automated chemiluminescence B_{12} analyzer with the acridinium ester-labeled B_{12} derivative and hog intrinsic factor, the most specific B_{12} -binding protein, and has demonstrated that except for foods containing substantial amounts of inactive corrinoids, the observed correlation coefficient between the microbiological and chemiluminescence methods in foods is excellent. [3,4]

The amounts of B_{12} in various fish sauces ($n\!=\!15$) made in Japan were determined with both L. delbrueckii microbiological and chemiluminescence methods. The values $(16.3\pm5.8\,\mu\text{g}/100\,\text{g})$ determined with the microbiological method were about 5.4-fold greater than the values $(3.0\pm2.0\,\mu\text{g}/100\,\text{g})$ determined with the chemiluminescence method.

 B_{12} contents (0.3–5.8 $\mu g/100\,g)$ in the fish sauce made in Thailand (Nam-pla) have been determined by the radioisotope dilution assay method with radio-labeled B_{12} and the intrinsic factor. $^{[2]}$

To evaluate why such differences between the values determined by both microbiological and chemiluminescence methods occur in the fish sauces,

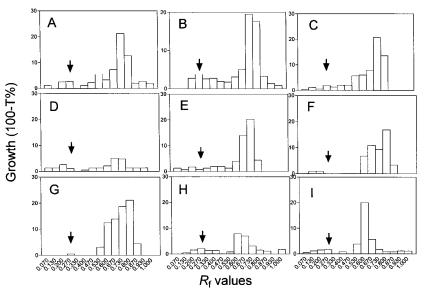
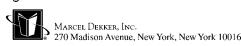
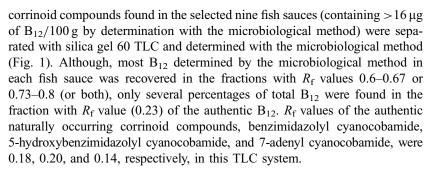




Figure 1. Mobile profiles of B_{12} active-compounds from the selected nine fish sauces (A \sim I) by silica gel 60 TLC. The TLC sheet developed with 1-butanol/2-propanol/water (10:7:10) as a solvent was dried and cut into small pieces. Corrinoid compounds were extracted, evaporated to dryness, and dissolved in 1.0 mL of distilled water. B_{12} was determined in these fractions with the microbiological assay. Arrows represent the fraction with $R_{\rm f}$ value of the authentic B_{12} . Data present typical mobile patterns of B_{12} active-compounds on the TLC from three experiments.

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

Although, *L. delbrueckii* ATCC 7830 can utilize both deoxyribosides and deoxynucleotides (known as an alkali-resistant factor), as well as B_{12} , ^[5] the alkali-resistant factor could not be detected in these fish sauces tested. These results suggest that the B_{12} active-fractions with $R_{\rm f}$ values of 0.6–0.67 and 0.73–0.8 are not derived from the alkali-resistant factor, but from unidentified corrinoid compounds.

Fish sauces may not be suitable for use as a B_{12} source because the unidentified corrinoid compounds are predominant in various fish sauces tested.

REFERENCES

- 1. Areekul, S.; Boonyananta, C.; Matrakul, D.; Chantachum, Y. Determination of vitamin B₁₂ in fish sauce in Thailand. J. Med. Ass. Thailand **1972**, *55*, 243–248.
- Areekul, S.; Thearawibul, R.; Matrakul, D. Vitamin B₁₂ contents in fermented fish, fish sauce and soya-bean sauce. Southeast Asian J. Trop. Med. Pub. Hlth. 1974, 5, 461.
- 3. Watanabe, F.; Takenaka, S.; Abe, K.; Tamura, Y.; Nakano, Y. Comparison of a microbiological assay and a fully automated chemiluminescent system for the determination of vitamin B₁₂ in food. J. Agric. Food Chem. **1998**, *46*, 1433–1436.
- Yamada, K.; Yamada, Y.; Fukuda, M.; Yamada, S. Bioavailability of dried Asakusanori (*Porphyra tenera*) as a source of cobalamin (vitamin B₁₂). Int. J. Vitam. Nutr. Res. 1999, 69, 412–418.
- Schneider, Z. Purification and estimation of vitamin B₁₂. In *Comprehensive B₁₂*; Scheider, Z., Stroinski, A., Eds.; Walter de Gruyter: Berlin, 1987; 111–155.

Received November 11, 2002 Accepted December 4, 2002 Manuscript 6108H